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A BST R A C T 

 

Anthropogenic landscape changes have fragmented populations within virtually all 

taxonomic groups, resulting in impacts across a wide range of biological processes. Among 

these, increased genetic isolation reduces gene flow among subpopulations and genetic 

diversity within subpopulations. These effects have been positively correlated with extinction 

risk, making an understanding of population structure and genetic diversity critical to the 

conservation of small populations in fragmented landscapes. The classical population 

genetics approach to quantify genetic diversity has been to assign sampled individuals to 

discrete subpopulations, and then calculate indices of genetic diversity assuming panmixia 

within otherwise isolated subpopulations. These assumptions do not account for other 

mechanisms of genetic isolation such as isolation by distance (IBD) or isolation by landscape 

resistance (IBR), which result in clinal population structures, and can therefore lead to 

misinformed conclusions regarding gene flow and genetic diversity. In chapter 1, I explore 

the potential for both discrete and clinal models to capture the genetic structure and diversity 

of mountain goats (Oreamnos americanus) in the Cascade Range, Washington. This 

population has been greatly depleted, apparently by harvest, and now inhabits a landscape 

highly altered by anthropogenic factors, including potential barriers that may subdivide the 

population into discretely bounded panmictic subpopulations. The geographic scale and 

complexity of this landscape, however, may favor IBD or IBR. With discrete models, I found 

that an interstate highway corridor fragmented the population into two subpopulations, each 

exhibiting low genetic diversity. However, with clinal models, including a novel approach to 
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identify gradients of genetic diversity, I found that the assumption of panmixia within each 

subpopulation was not supported, and that discrete models masked substantial heterogeneity 

in genetic diversity. I discuss the implications of these findings for conservation of species in 

fragmented landscapes. 

 An understanding of genetic isolation within the study area will improve our ability to 

identify landscape factors that limit gene flow, resulting in informed management decisions 

and more effective strategies to improve gene flow. In Chapter 2, I explore the relative 

importance of barriers, distance, and landscape resistance to genetic isolation among 

mountain goats in the Cascades. While isolation due to distance or barriers is conceptually 

easy to model, models of isolation by landscape resistance (IBR) based on expert opinion are 

highly subjective. Here, I employed a causal modeling framework to rigorously test the 

assumptions of an expert opinion landscape resistance model with multiple alternative IBR 

hypotheses. I used a novel, multivariate approach to model selection as well as circuit theory 

to quantify landscape resistance. I found that an alternative IBR hypothesis was more highly 

correlated (r = 0.723) with genetic isolation in the Cascades than the expert opinion model, 

or other models based on isolation by barriers or distance. This IBR model indicated that an 

interstate bisecting the range, highways, development, low elevation valleys, and water 

bodies limit connectivity, and suggests modern landscape changes have greatly reduced gene 

flow. I conclude by discussing the implications of this modern landscape for the recovery and 

persistence of mountain goats in the Cascade Range, Washington. 
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PR E F A C E 

 

One quarter of all mammalian species are now listed in the three highest categories of 

extinction risk (critically endangered, endangered, and threatened) as defined by the 

International Union for Conservation of Nature (IUCN 2008). The IUCN attributes this 

extinction risk to three primary factors. Unsustainable levels of harvest have resulted in the 

depletion of many mammalian species, and the surviving remnant populations are often small 

and extinction prone. In addition, habitat destruction, commonly in the form of deforestation, 

conversion of habitat for agriculture, or urbanization, has greatly reduced the range of nearly 

all threatened mammalian species. Finally, partially as a result of extensive habitat loss, 

many of these species exist in populations that are highly fragmented, a condition which, as 

this thesis explores, also contributes to extinction risk. 

 Mountain goats (Oreamnos americanus) are currently listed as a species of “least 

concern” (IUCN 2008). Their low risk of global extinction is due primarily to their limited 

exposure to harvest, habitat loss, and habitat fragmentation over much of their native range in 

North America (Festa-Bianchet and Cote 2007). The limited impact of these factors is largely 

a function of the extreme isolation between most mountain goat populations and human 

habitats – they live in some of the most remote mountain ranges on Earth, and within those 

ranges, they are habitat specialists adapted to living in the steepest and most inaccessible 

environments. The low global risk of extinction among mountain goats, however, is not to 

say that locally, some populations in North America are without risk of extinction. Indeed, 

the population in the Cascade Range of Washington, which is the subject of this thesis, has 

been greatly depleted by harvest while, at the same time, modern landscape changes may 
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have resulted in habitat fragmentation. As a result, the viability of this population is now a 

management concern. 

 While the IUCN is focused primarily on global extinctions, the impact of local 

extinctions (extirpation) within any particular ecosystem is manifest regardless of whether 

the species is also extinct elsewhere. For example, the fact that grey wolves (Canis Lupus) 

are abundant in Canada and Alaska does not change the local effects arising from their 

extirpation over most of their former range throughout the contiguous United States. 

Extirpations and, more generally, loss of biodiversity can have profound effects on 

ecosystem structure and function (Naeem et al. 1994, Letters 2002, Hooper et al. 2005, 

Cardinale et al. 2006). The loss of large mammals in particular may have a disproportionate 

effect on ecosystem processes, as such species often play keystone roles regulating the 

abundance and distribution of other species, with additional effects arising through trophic 

cascades (Paine 1969, Mills et al. 1993). For example, reintroduction of wolves into the 

Yellowstone ecosystem altered the behavior and abundance of the ungulate species there, 

which, in turn, resulted in a restructuring of the plant community (Ripple and Beschta 2003). 

While the loss of mountain goats from alpine communities has not been studied, their role in 

supporting populations of predators such as grey wolves (Fox and Streveler 1986) as well as 

their effects on plant communities (Pfitsch 1981) would suggest this species plays an 

important role in the alpine ecosystems in which they have co-evolved for millennia. 

 The goal of this study was to investigate the potential for past harvest and modern 

habitat fragmentation in the Cascade Range, Washington to result in loss of genetic diversity, 

the effects of which may impair the recovery and long-term viability of the local mountain 

goat population. In Chapter 1, I delineated this population’s genetic structure in order to 
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identify anthropogenic factors that might fragment the population. Within that structure, I 

quantified current levels of genetic diversity as well as the potential of the population to 

retain genetic diversity in the future. In Chapter 2, I modeled genetic isolation and gene flow 

within the Cascades to evaluate connectivity given the modern landscape. Together, the 

results and discussion presented in these chapters offer insight into the ability of this 

population of mountain goats to persist in the future, and suggest means by which wildlife 

managers may improve the population’s long-term viability. 
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C H APT E R 1 

 

The Genetic Structure and Molecular Diversity of Mountain Goats 

 in the Cascade Range, Washington  

 

IN T R O DU C T I O N 

Harvest, habitat loss, and habitat fragmentation are important factors shaping the current 

abundance and distribution of mammals (Scribner 1993, Ceballos and Ehrlich 2002, 

Wiegand et al. 2005). Small remnant populations inhabiting fragmented landscapes are 

susceptible to extirpation by environmental stochasticity and Allee effects (Lande 1998a, 

Dennis 2002), as well as several genetic processes (Lacy 1997, Gaggiotti 2003, Keyghobadi 

2007). Among the genetic factors influencing population persistence, inbreeding depression 

(Keller and Waller 2002, Roff 2002, Reed et al. 2007) has been shown to strongly affect 

extinction risk in wild populations (Crnokrak and Roff 1999, Hedrick and Kalinowski 2000, 

Tanaka 2000, Brook et al. 2002, O'Grady et al. 2006). Small populations are also susceptible 

to loss of allelic diversity through genetic drift, increasing the risk of reduced evolutionary 

potential and random fixation of deleterious alleles (Lacy 1997, Willi et al. 2006). Lost 

fitness due to these genetic processes may promote additional population decline, further 

eroding genetic diversity and fitness until ultimately, the population is extirpated in what has 

been termed an extinction vortex (Gilpin and Soulé 1986, Lacy 1997, Tanaka 2000, Fagan 

and Holmes 2006). 

To ascertain whether a population is susceptible to extirpation by genetic factors, an 

understanding of genetic structure (to infer the extent of genetic isolation) and genetic 

diversity (in terms of inbreeding and heterozygosity) is required. In classical population 
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genetics, population structure is either arbitrarily defined using discrete boundaries or, more 

recently, molecular methods are used to assign individuals to discrete subpopulations. In 

either case, genetic diversity indices are then calculated for all individuals within each 

subpopulation. This approach assumes that strong dispersal barriers subdivide a population 

into otherwise panmictic subpopulations. While this may be appropriate for some species in 

certain landscapes, this assumption does not account for alternative mechanisms of genetic 

isolation, including isolation by distance (Wright 1943) or isolation by landscape resistance 

(Cushman et al. 2006, McRae 2006). These latter two mechanisms both give rise to clinal 

populations, where genetic structure and diversity are characterized by gradients rather than 

discrete boundaries. If isolation by barrier is not the primary driver of genetic isolation within 

a population, assuming discrete boundaries and panmictic subpopulations may lead to 

erroneous estimates of genetic diversity, with concomitant adverse effects on the ability of 

wildlife managers to assess the role genetic factors may play in population viability. 

In this study, I sought to gain insight into this issue by comparing the genetic 

structure and diversity of a mountain goat (Oreamnos americanus) population in the Cascade 

Range, Washington, using both discrete and clinal methods. In 1961, the Washington 

Department of Game (now Washington Department of Fish and Wildlife; WDFW) estimated 

this population to number about 8500 (excluding large populations within Mount Rainier 

National Park and Yakama Indian Nation lands, where no surveys were conducted). More 

recent WDFW surveys estimate 2512 (95% CI: 2137-2868) remain, including Mount Rainier 

National Park and all tribal lands (Rice, WDFW, unpublished data). A recent study provides 

evidence that the predominant cause of this decline is likely the high level of harvest that 

began in the 1940’s and peaked in the 1960’s (Rice and Gay 2009). However, despite an 
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almost complete ban on harvest during the past two decades, recovery has not been apparent 

in most areas of the Cascades, and large areas of formerly occupied habitat remain sparsely 

populated. This raises the possibility that genetic factors may play a role in the recovery of 

this population. 

In addition to the effects of past harvest, the modern landscape may also affect the 

viability of mountain goats in the Cascade Range. Numerous forest service roads, several 

major state highways, and one interstate highway now cross the range. Several ski resorts and 

residential areas have been developed near major passes, and timber harvest has altered 

montane forests surrounding alpine mountain goat habitat. This modern Cascades landscape 

may act in conjunction with historic landscape factors to reduce migration between habitat 

patches and thereby fragment the population into smaller subpopulations exhibiting reduced 

gene flow. In particular, major highways have been shown to be instrumental factors 

contributing to fragmentation among a number of vertebrate species (Forman 2003, Coffin 

2007). In the Cascades, Interstate 90 (I-90), the most heavily used roadway in the state, spans 

the entire range, and may therefore act as a strong barrier to north-south gene flow, 

effectively dividing the Cascades into two discrete subpopulations. Alternatively, the 

geographic scale and complexity of the modern landscape may favor isolation by distance or 

isolation by landscape resistance, resulting in a clinal population structure.  

The potential for both discrete and clinal structure among mountain goats in the 

Cascades makes this population an ideal opportunity to compare classical discrete population 

genetics methods of assessing genetic structure and diversity with clinal methods. In this 

study, I used these two alternative approaches, including a novel means of quantifying spatial 

gradients of genetic diversity, to provide a contrasting but potentially complimentary 
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perspective that may improve our understanding of genetic factors affecting the recovery and 

long-term viability of mountain goats in the Cascade Range, Washington.  

  

M E T H O DS 

Study area 

The study area includes approximately 36,500 km2 of the Cascade Range of Washington, 

extending some 315 km from Mount Adams to the Canadian border (Figure 1). This region 

represents the southern extreme of the coastal North American population of mountain goats, 

and appears poorly connected to the nearest populations in Idaho and British Columbia. The 

landscape is generally mountainous and, at high elevations, includes rocky alpine ridges and 

summits, cliffs, alpine meadows, parkland, and glaciers. At lower elevations, heavily forested 

glacial valleys predominate. Elevation ranges from near sea level to almost 4400 m. Annual 

precipitation averages from as low as 70 cm on the eastern slopes to over 350 cm at some 

high elevation areas west of the crest. Numerous roads are found throughout the Cascades, 

the largest of which is Interstate 90, which runs east-west across the crest of the range 

through Snoqualmie Pass. In addition, three state highways run east-west across the range 

(two north and one south of I-90) and numerous other highways and secondary roads intrude 

towards the crest mainly from the lower elevation valleys to the east and west. A few 

developed areas exist within the study area. They include several small towns and 

agricultural areas situated in lower elevation valleys along the periphery as well as several ski 

resorts located near the major mountain passes. 
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Historic translocations  

A non-native mountain goat population was established on the Olympic peninsula in the 

1920’s from 12 individuals drawn from founder populations in Alaska and British Columbia. 

In an effort to eliminate this species from Olympic National Park (ONP), the National Park 

Service translocated several hundred mountain goats to areas throughout the western United 

States, including a total of 130 animals to 15 sites (Figure 1) within the Washington Cascades 

(Houston et al. 1991). Because these translocations have the potential to confound genetic 

analyses of the native Cascade mountain goat population, samples were collected from the 

ONP population to be used for identification of ONP-Cascades admixed genotypes. 

  

Sample collection 

I obtained genetic samples from the Cascade and Olympic Ranges (Figure 1) by multiple 

means between 2003 and 2008. The National Park Service (NPS) contributed a total of 17 

blood samples (8 from ONP, 6 from Mount Rainier National Park, and 3 from the North 

Cascades National Park) obtained from animals chemically immobilized for the purpose of 

affixing GPS collars. WDFW also contributed 41 blood samples from throughout the 

Cascade Range obtained from animals chemically immobilized to attach GPS collars. 

WDFW contributed an additional 68 tissue samples donated from hunters legally issued a 

permit to harvest mountain goats in the Cascades. I, in collaboration with WDFW, also 

collected 29 Cascades and four Olympic Range tissue samples by biopsy darting via 

helicopter or on foot. Lastly, I obtained one bone marrow and one muscle sample from 

carcasses found in the field (cause of mortality unknown). In total, I included 149 genetic 

samples of all types from the Cascades 12 tissue and blood samples from the Olympic Range 
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in this study. All procedures were approved by the Animal Care and Use Committee at 

Western Washington University and permitted by WDFW and the National Park Service. 

 

Genotyping 

Genotyping was performed by the WDFW molecular genetics laboratory in Olympia, 

Washington. They extracted DNA from tissue, bone marrow, or blood with the commercial 

DNeasy® blood and tissue DNA isolation kit (Qiagen) according to the manufacturer’s 

protocol. They eluted DNA from the column with 100 μl of elution buffer, and used PCR to 

amplify 19 previously characterized polymorphic microsatellite markers, using six separate 

uni- or multi-plex reactions (multiplex Oam-A [BM121, BM4107, BM6444, TGLA122], 

Oam-B [OarCP26, OarHH35, RT27], Oam-C [BM1818, BM4630, RT9, URB038], Oam-D 

[BM203, BMC1009, HUJ616, McM527], Oam-E [BM1225, BM4513, HEL10], and 

TGLA10; PCR conditions available from WDFW) determined to effectively amplify 

mountain goat DNA (Mainguy et al. 2005). PCR products were visualized using an ABI 

3730 capillary sequencer (Applied Biosystems), and sized using the GeneScan 500-Liz size 

standard (Applied Biosystems) and Genemapper 3.7 (Applied Biosystems). 

I tested for deviations from Hardy-Weinberg equilibrium (HWE) and linkage 

disequilibrium (LD) with GENEPOP 3.4 (Raymond and Rousset 1995). For loci with fewer 

than four alleles, I used the complete enumeration method (Louis and Dempster 1987). In all 

other cases, I used the Markov chain method (Guo and Thompson 1992). I adjusted 

significance values for multiple comparisons with a Bonferroni correction (Rice 1989). I 

used the program MICROCHECKER 2.2.0 (Van Oosterhout et al. 2004) to screen for 

genotyping errors, including allelic dropout, null alleles, and stuttering that might hinder 
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detection of heterozygotes. I corrected null allele estimates for inbreeding (calculated for 

each STRUCTURE subpopulation) with Null Allele Estimator 1.3 (Van Oosterhout et al. 

2006). 

 

Population structure  

I used three methods (two discrete and one clinal) to assess population structure, each of 

which makes different assumptions about the data regarding HWE and LD, or the spatial 

location of the sample. Multiple methods were required because I sought to detect both 

discrete and clinal structure. Moreover, because the spatial location of any Cascade 

descendants of translocated ONP goats would be an artifact of their recent ancestor’s 

translocation, I first needed to identify these individuals with a method that does not use the 

spatial location of the sample to influence assignments. For this I used STRUCTURE 2.2 

(Pritchard et al. 2000) which  performs Bayesian inference of the most likely number of 

populations sampled and assigns individuals to populations based on minimizing Hardy-

Weinberg and linkage disequilibrium within populations. To achieve this, the program uses a 

Markov chain Monte Carlo (MCMC) simulation to estimate the posterior probability that the 

data fit the hypothesis of K populations, P(X|K). I tested values of K ranging from 1 to 10 

with 5 independent runs per test (admixture model with correlated allele frequencies, a 

100,000 step burn-in followed by 106 steps of data collection). I chose the best supported 

value of K based on the second order rate of change (ΔK) in probability described by 

(Evanno et al. 2005). The admixture model also calculates the fractional probability (Q) of 

individuals belonging to each population.  
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Including descendants of ONP goats translocated to the Cascades would potentially 

confound this analysis of population structure. While all Cascades samples had some 

background posterior probability of ONP membership, samples with low probability of ONP 

ancestry are unlikely to bias results, and their omission reduces sample size for analyses of 

the Cascades population. As a balance between bias and sample size, I required the posterior 

probability of ONP population membership to be greater than 0.25 in order to classify a 

Cascade sample as “ONP-Cascade admixed.” I evaluated the native population structure of 

mountain goats in the Cascades without the confounding effect of translocations by 

excluding ONP and ONP-Cascades admixed samples and rerunning STRUCTURE on native 

Cascades samples with the same parameters and criteria as above. 

 In addition to STRUCTURE, I used Geneland 3.1.3 (Guillot et al. 2005) as a 

complimentary approach to assess population structure. Geneland also performs Bayesian 

inference with a MCMC simulation and a population model based on minimizing Hardy-

Weinberg and linkage disequilibrium. However, Geneland allows inclusion of the spatial 

coordinates to inform the prior distribution. I excluded all ONP-Cascades admixed samples, 

and then assessed the support for 1 to 10 populations with a burn-in of 100,000 iterations 

followed by 106 additional iterations, from which every 100th observation was sampled to 

reduce autocorrelation of the parameter estimates. I used the uncorrelated allele frequency 

model, which has been shown to perform better at estimating K than the correlated allele 

model (Guillot et al. 2005), as well as the option to filter null alleles. After inferring K, I then 

re-ran the Geneland simulation fixed at K to derive the population membership assignments 

and the posterior probability maps.  
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As an alternative to population based methods, I also inferred population structure 

with spatial principle components analysis, sPCA (Jombart et al. 2008). This approach, 

implemented in the R package Adegenet (Jombart 2008), makes no assumptions regarding a 

population model, nor does it assign individuals to discrete subpopulations. Rather, sPCA 

ordinates genotypes along a continuum of relatedness taking into account both the variance 

between individuals and spatial autocorrelation. As such, sPCA is an ideal tool to spatially 

represent populations structured as a cline. I used a nearest neighborhood by distance 

connection network where samples were connected if between 0 and 60 km (few long 

distance dispersal events have been known to exceed this distance, (Stevens 1983, Festa-

Bianchet and Cote 2007) I then tested the significance of the global and local scores with the 

Monte Carlo tests implemented in Adegenet. 

 

Genetic diversity and F-statistics 

For each subpopulation identified by our discrete-method analysis of genetic structure 

(STRUCTURE and Geneland), I estimated observed heterozygosity - Ho, Nei’s gene 

diversity - He (Nei et al. 1978), inbreeding coefficient - F IS, and Θ (Weir and Cockerham 

1984), with FSTAT version 2.9.3.2 (Goudet et al. 2002). In addition, I tested the significance 

of the differences in Ho and He with the two tailed non-parametric test implemented in 

FSTAT with 10,000 permutations. I also calculated the effective number of alleles (AE). 

In addition, I calculated individual-based diversity indices within a moving window 

in a raster GIS environment. This novel approach does not assume discretely bounded 

subpopulations, and therefore has the potential to detect gradients of genetic diversity. I first 

generated a point layer containing all Cascades genetic samples (including ONP-admixed 
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samples). Each point was joined to a table of individual allele usage (each allele was scored 

as 0 for not used, 1 for heterozygous, and 2 for homozygous), which I used to calculate 

multilocus heterozygosity (% of heterozygous loci) - H, and He in a circular moving window 

with a radius of 24 km. While I used a 60 km window in the sPCA analysis to model the 

maximum possible distance at which samples were connected, I chose a more typical 

dispersal distance of 24 km to reflect the diversity of individuals most likely to contribute to 

genetic diversity near the center of the window. I also calculated AE, and F IS in the same 

manner. I specifically chose these diversity indices because they are corrected for sample 

size, however, I excluded pixels where fewer than five individuals were within dispersal 

distance in order to minimize bias in sparsely sampled regions.   

 
Migration  

To assess the degree to which each subpopulation was isolated by barriers, I sought to 

estimate recent migration rates between all subpopulations. For this I used a Bayesian 

approach based on multilocus microsatellite genotypes as implemented in the software 

package BayesAss+ (Wilson and Rannala 2003). BayesAss+ makes fewer assumptions than 

estimators of long-term gene flow, including relaxing the requirement for populations to be 

in HW equilibrium. After a burn-in period of 106 iterations, 2x106 iterations were performed 

and sampled at a frequency of 1 in 2000. I set the delta value for allele frequency, migration 

rate, and inbreeding at 0.14, 0.07, and 0.13 respectively. These values were chosen such that 

the accepted number of proposed changes was approximately 50% of the total number of 

iterations, as recommended by the software authors. 
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R ESU L TS 

Sample statistics 

The 161 genotypes I analyzed were, on average, 97.4% complete. None of these were > 95% 

identical, indicating that each sample was a unique individual. I re-amplified and genotyped 

4.5% of samples to estimate the error rate, which was 0%. The samples included in this study 

represent approximately 5% of the total population of Washington. Eighteen of the 19 loci 

genotyped were polymorphic. I excluded the monomorphic locus URB038 from all analyses. 

I found no evidence for LD among any of the loci after Bonferroni correction for multiple 

comparisons (alpha = 0.05), but I observed significant departures from HWE in 13 loci when 

all samples were evaluated as a single population. When a population is structured, however, 

disequilibrium is predicted by the Wahlund effect (Wahlund 1928). After dividing the data 

into populations that correspond with the STRUCTURE clusters, none of the loci showed 

significant departures from HWE after Bonferroni correction for multiple comparisons. No 

evidence for allelic dropout or stuttering was detected by MICROCHECKER; however, 7 

loci (BM203, BMC1009, BM1818, HEL10, BM1225, TGLA10, HUJ616) showed 

significant homozygote excess, suggesting the presence of null alleles. After correcting for 

inbreeding the estimated frequency of null alleles was less than 0.03 for all 7 loci. I therefore 

elected to retain these loci for all analyses. 

 

Population genetic structure 

The ΔK value decreased markedly after K=3 when all samples were included in the 

STRUCTURE assignment test, indicating the highest support for 3 populations (Figure 3a). 

These three clusters correspond geographically to the Olympic Range, the north Cascades, 
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and the south Cascades (Figure 2a). The boundary between the north and south Cascades 

coincides with the I-90 corridor. The ONP cluster contained all 12 individuals sampled from 

the Olympic range, each of which was assigned with near 100% probability (Figure 2b). 

Fourteen samples in the Cascades had a probability ≥ 0.25 (mean 0.45, maximum 0.67) of 

belonging to the ONP population and were therefore classified “ONP-Cascades admixed”. 

Based on the probability of population membership (Figure 2b) it appears nearly all the 

ONP-Cascades admixture occurs in the south Cascades. Furthermore, aside from one sample 

(identified as a first generation migrant by BayesAss+), the south Cascades does not appear 

highly admixed with the north Cascades, however, the north Cascades contains numerous 

individuals with a high probability of south Cascades subpopulation membership. Rerunning 

STRUCTURE excluding the ONP and ONP-Cascades admixed samples yielded a ΔK peak at 

K=2, supporting the 2 Cascades population structure that was evident when all samples were 

included (Figure 3a). 

The Geneland analysis, which excluded ONP and ONP-Cascades admixed samples, 

also strongly favored two Cascade populations (K=2 was the most frequent value along the 

simulation chain, Figure 3b) and similarly identifies the genetic discontinuity corresponding 

to the I-90 corridor (Figure 2a). A zone of lower probability of belonging to the north 

Cascades subpopulation exists near Glacier Peak and the east-central Cascades. This zone 

coincides with the location of several samples classified by STRUCTURE as having a higher 

probability of belonging to the south Cascades subpopulation than the north Cascades 

subpopulation. 

I observed a significant global structure within the Cascades by sPCA analysis (P < 

0.00001) indicating positive spatial autocorrelation of genotypes at the scale of the study area 
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(Figure 4b, first eigenvalue). The test for local population structure (negative autocorrelation 

at the local scale) was also significant (P = 0.034), however, the magnitude of the first local 

eigenvalue was very small, indicating local structure is negligible. First global axis sPCA 

scores, interpolated to aid in visualization (Figure 4a), revealed a clinal population structure 

along a north-south axis, with the most negative values located in the far north, increasing 

towards zero approaching I-90, and then becoming positive south of I-90. In areas where 

sample density was low, the interpolated sPCA score may not accurately represent the local 

sPCA values. 

 

Population differentiation and migration 

Global Θ (Weir and Cockerham, 1984; an estimate of FST) for all samples was 0.187 

indicating significant population substructure. I calculated pairwise Θ values between all 

three STRUCTURE subpopulations, excluding the ONP-Cascades admixed samples (Table 

2). Θ ranged from 0.112 to 0.417, and all pairwise comparisons were significant after 

Bonferroni correction for multiple tests (alpha = 0.05).  

I estimated recent migration rates with BayesAss+ to be 0.028 per generation from 

the south Cascades to the north Cascades and 0.010 per generation in the opposite direction. 

Three samples in the north Cascades (collected from GPS collared goats in the Glacier 

peak/east-central Cascades area) that were identified by STRUCTURE as belonging to the 

south Cascades population were classified by BayesAss+ as offspring of first generation 

migrants originating from the south Cascades. One sample in the Goat Rocks area (south 

Cascades) was identified as a first generation migrant from the North Cascades. This sample 

was submitted by a hunter permitted to harvest a goat from Goat Rocks, however, a 
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migration to that area from the north Cascades would represent an extreme dispersal distance 

that also involved crossing I-90, raising the possibility the harvest location was incorrectly 

reported by the hunter.  

 

Genetic diversity  

Based on discrete population calculations, diversity was variable among the two Cascades 

populations, the ONP population, and the ONP-Cascades admixed group. Ho ranged from a 

low of 0.351 in the south Cascades (excluding ONP admixed goats) to a high of 0.489 within 

the ONP-Cascades admixed goats. He varied from 0.394 in the south Cascades (excluding 

ONP-Cascades admixed goats) to 0.502 among ONP-Cascades admixed goats. F IS was 

lowest among ONP-Cascades admixed goats (0.026, P = 0.2917) and highest among ONP 

goats (0.187, P = 0.0014). AE ranged from a low of 1.92 in the ONP population to a high of 

2.41 among ONP admixed individuals.  

 As an alternative to discrete population statistics, I calculated diversity indices (Ho, 

He, AE, and F IS) for the Cascades in a 24km dispersal radius moving window (Figure 5). The 

increased spatial resolution of the moving window analysis revealed high variability within 

the two Cascades subpopulations. Ho ranged from 0.303 on the west side of Mount Baker to 

0.503 near Glacier Peak. He ranged from a low of 0.356 on the west side of Mount Baker to a 

high of 0.522 near Glacier Peak. F IS varied from a low of -0.084 in the Okanogan area to a 

high of 0.231 southeast of goat rocks. AE ranged from a low of 1.35 in the southeast Cascades 

to 2.42 near Glacier Peak.  
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DISC USSI O N 

Discrete vs. clinal models of population structure 

In this study, I found that discrete population based methods and clinal population methods 

offered differing perspectives on the genetic structure and diversity of Cascade Range 

mountain goats. From a discrete population perspective, assignment tests using both 

STRUCTURE and Geneland revealed a discontinuity that corresponds closely to the location 

of the I-90 corridor. Interstate 90 is by far the largest east-west travel route in the state and 

receives high traffic volumes during the summer months when mountain goats are most 

likely to disperse. While no studies have been conducted regarding the behavior of mountain 

goats with respect to road traffic, this species generally avoids human habitats. As mountain 

goat deaths from traffic collisions have not been observed along I-90 (Washington State 

Department of Transportation, pers. comm.), the reduced migration across this boundary may 

be rooted in behavior rather than mortality. In addition to the interstate, three ski resorts, 

several housing developments, and a large reservoir have been constructed near where I-90 

crosses the crest of the Cascades at Snoqualmie pass. This high elevation area contains the 

most escape terrain and alpine habitat of any stretch along I-90 and therefore may have 

historically been the best dispersal corridor linking the north and south Cascades. As such, 

development in this area may add to the barrier effect of the interstate and further reduce 

gene flow. 

The high differentiation detected between the north and south Cascades 

subpopulations suggests I-90 strongly affects migration. From a discrete population 

perspective, therefore, the Cascade Range is divided into north and south subpopulations. 

Additional subdivision of the north and south Cascades subpopulations was not supported by 
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the STRUCTURE or Geneland analysis. When calculating genetic diversity indices based on 

this discrete population structure, one assumes genetic diversity within subpopulations is 

uniform (i.e. panmixia), and that no individuals from other subpopulations contribute to 

genetic diversity (i.e. isolation by barriers). 

Multiple lines of evidence, however, suggest this discrete population perspective does 

not fully capture the genetic isolation present within the study area. The detection of a first 

generation migrant (possibly an artifact, as described in the results) and three offspring of 

first generation migrants by BayesAss+ indicates I-90 is not an absolute barrier to migration. 

This is supported by the degree of admixture between the two subpopulations detected in the 

STRUCTURE Q-plot. Additionally, the sPCA analysis revealed a north-south gradient of 

relatedness that suggests a clinal population structure, raising the possibility that isolation by 

distance or isolation by landscape resistance may act in conjunction with the barrier effect of 

I-90 to increase genetic isolation. In chapter 2, I use a landscape genetics approach to 

evaluate the relative support for these alternative hypotheses of genetic isolation.  

 

Discrete vs. clinal models of genetic diversity  

Assuming isolation by barrier (due to I-90) and panmixia within each subpopulation, the 

estimated heterozygosity, inbreeding, and allelic diversity reveal genetic diversity within the 

Cascades is significantly lower compared to the large and functionally connected populations 

that inhabit the core mountain goat habitat of North America in Alberta and British Columbia 

(only data for the Caw Ridge, Alberta population has been published – see Table 1; however, 

a recently completed study by A. Shafer et al., University of Alberta, unpublished, reveals 

ten other core populations have similar Ho, He, AE, and F IS values compared to Caw Ridge).  
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In the short term, the low heterozygosity I observed is particularly troubling, as this has 

recently been shown to be negatively correlated with survival among juvenile mountain goats 

(Mainguy et al. 2009). In the long-term, low allelic diversity over much of the Cascades 

relative to core populations in North America suggests a more limited evolutionary potential 

for this population. 

The discrete subpopulation perspective of genetic diversity, however, masks 

considerable heterogeneity I detected with the moving window analysis. With this approach, 

I found that the central Cascades, particularly north of I-90, exhibited much higher levels of 

heterozygosity and allelic diversity as well as lower inbreeding than predicted by the discrete 

approach. Indeed, values in this area were comparable to the core North American 

populations. On the other hand, the northern and southern portions of the range exhibited 

lower heterozygosity and allelic diversity and higher inbreeding levels than predicted by the 

discrete approach. This finding is consistent with a gradient population structure, which 

would predict higher genetic diversity in the central cascades due to multiple avenues for 

gene flow from both the north and south. The low diversity levels observed in the far south 

Cascades is also consistent with the position of this area at the southern terminus of the 

coastal North American mountain goat population, where gene flow is limited to a single 

direction. Importantly, the lower heterozygosity and higher inbreeding levels identified by 

the moving window analysis suggest inbreeding depression may be a much more immediate 

threat to population persistence and recovery in these areas than would have been predicted 

by the discrete subpopulation-level analysis.  
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Implications of model choice for conservation  

Wildlife passages and translocation are two widely employed strategies to improve gene flow 

and therefore benefit population viability in fragmented landscapes. In the Cascades, for 

example, three wildlife passages potentially suited for mountain goats are planned for I-90 

(noted on Figure 1). The spatial gradients of genetic structure and diversity I detected may 

have important implications to the success of these strategies that were not apparent in the 

discrete population analysis. Notably, the additional genetic differentiation detected by sPCA 

suggests that the north subpopulation in particular is not panmictic, raising the possibility 

distance or other landscape factors, in addition to I-90, may limit gene flow. If so, any 

increase in north-south gene flow due to wildlife passages may not affect diversity within the 

subpopulation uniformly. Rather, population genetic theory would predict gene flow through 

wildlife passages would raise allelic diversity and heterozygosity as well as lower inbreeding 

in areas proximal to these structures, but with diminishing impact along the same distance or 

landscape resistance gradient that shapes the population’s clinal structure. The mechanism of 

genetic isolation may also influence the optimal placement of wildlife passages. Isolation by 

distance, for example, would suggest such structures should be located in regular intervals to 

minimize the distance to the nearest passage, while IBR would favor placement to minimize 

landscape resistance along north-south corridors. Under a barrier model of isolation, any 

genetic variation crossing I-90 would be predicted to spread uniformly, increasing diversity 

throughout the subpopulation regardless of where the passages are constructed.  

In addition to wildlife structures, translocation between subpopulations may be used 

to artificially improve gene flow. Here too, the mechanism of isolation bears strongly on the 
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conservation strategy. To improve genetic diversity in an area isolated primarily by IBD or 

IBR, translocated animals would be most effectively placed at sites that minimize distance or 

landscape resistance, respectively, to the target area. By contrast, translocations anywhere 

within a subpopulation would be predicted to improve genetic diversity under a model of 

subpopulation panmixia. In the south Cascades, which appear panmictic from both a discrete 

and clinal population model perspective, I detected 14 descendants of ONP goats 

translocated in the 1980’s. In the five or so generations since these translocations, the 

distribution of ONP-Cascade admixed animals still appears strongly tied to the release sites, 

however, with time, the unique ONP alleles may continue to spread throughout the south 

Cascades, supporting the assertion of panmixia. Importantly, the potential for translocation to 

improve genetic diversity among mountain goats is reflected in the high genetic diversity of 

these ONP-Cascade admixed animals (Table 1).  

This study highlights the potential for clinal models such as sPCA and the moving 

window analysis of genetic diversity I introduce here to offer a complimentary approach to 

understanding genetic structure and diversity, leading to more informed assessments 

regarding the role genetic factors may play in population viability. Ultimately, the future of 

the Cascades population will be determined by the complex interaction of many factors, 

including population demographics, genetic structure, gene flow, and small population 

extinction dynamics. This study highlights the need for incorporating these factors, as well as 

management strategies such as wildlife passages and translocation, into a population viability 

assessment to determine which scenarios best support a sustainable population of mountain 

goats in the Cascade Range of Washington. 
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T A B L ES 

 

 

 

 

 

Table 1. Sample size (n), genetic diversity summary statisticsa, fixation indices (F IS), 
and significance test for inbreeding for mountain goat populations in Washington and 
Alberta, Canada.  

 n AE Ho He F IS F IS P-value 
North Cascades 63 2.21 0.41 0.46 0.10 0.0007 
South Cascades + ONP b 86 2.04 0.37 0.43 0.12 0.0007 
South Cascades – ONP b 72 1.97 0.35 0.39 0.11 0.0007 
Olympic National Park 12 1.92 0.37 0.46 0.19 0.0014 
ONP-Cascades admixed 14 2.41 0.49 0.50 0.03 0.2917 
Caw Ridge, Alberta c 215 2.34 0.55 0.53 -0.03 - 

a AE ,effective number of alleles; Ho observed heterozygosity; He gene diversity 
bThe south Cascades population is calculated twice, first by including the ONP-Cascades admixed samples and 
then with those samples excluded. 
cValues for the Caw Ridge population are based on 16 of the 18 loci used to calculate diversity for the 
Washington populations. F IS and AE were calculated from the originally reported Ho and He (Mainguy 2005). 
The FIS P-value for this population has not been published. 
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Table 2. Pairwise Θ values for the three Washington mountain goat populations and 
the south Cascades goats classified as ONP-Cascades admixed are given below the  
diagonal and the associated P values are given above the diagonal. 
 North 

Cascades 
South 

Cascades 
Olympic 

NP 
ONP-Cascades 

admixed 
North Cascades - 0.008 0.008 0.008 
South Cascades* 0.113 - 0.008 0.008 
Olympic NP 0.378 0.417 - 0.017 
ONP-Cascades admixed 0.146 0.118 0.194 - 

*The south Cascades population does not include ONP-Cascades admixed samples in this table. 
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F I G UR ES 

 

F igure 1. Map of the study area, including reference names to denote regions, location of 
genetic samples, highways, proposed highway passages, translocation sites, and the current 
mountain goat range. 
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F igure 2. (a) Cascades sample locations are indicated by shapes that represent the population 
to which they have the highest probability of membership based on the STRUCTURE 
assignments. The Geneland posterior probability map of membership for the north Cascades 
is also represented. (b) STRUCTURE Q-Plot showing the posterior probability of 
membership (Q) for the south Cascades (red), north Cascades (cream), and ONP (blue). Each 
horizontal bar represents an individual, grouped by the population in which they were 
sampled (ordered by probability of north Cascades membership in the northern 
subpopulation and the probability of ONP membership in the southern subpopulation). 
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F igure 3. (a) The second order rate of change in the STRUCTURE assignment probability 
(ΔK) for 1 to 10 populations. Open circles represent all samples and closed circles represent 
Cascade samples only (excluding ONP and ONP-Cascade admixed samples). (b) Density 
plot of the number of Cascade populations (K) along the Geneland MCMC chain. 
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F igure 4. (a) Interpolated first global sPCA axis eigenvalues for all Cascade samples. (b) 
sPCA eigenvalues for each global and local axis.
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 CHAPTER 2 
 

Mountain Goat G ene F low in the Cascade Range, Washington  

 

IN T R O DU C T I O N 

A primary effect of habitat fragmentation is to subdivide large populations into smaller 

demographically isolated subpopulations (Saunders et al. 1991). This, in turn, limits the flow 

of genetic variation across the landscape (gene flow) and reduces the local effective 

population size, Ne (Keyghobadi 2007). Ne is largely determined by the interaction between 

population size and gene flow, as well as demographic factors (e.g. sex ratios and mating 

success rates), and is a key factor governing the balance between accumulation of genetic 

diversity, through mutation and immigration, and loss of diversity through inbreeding and 

genetic drift (Frankham 1996). Small populations isolated from gene flow tend to reach an 

equilibrium that favors loss of genetic diversity, and are therefore susceptible to extinction 

due to genetic processes, including inbreeding depression (Crnokrak and Roff 1999), random 

fixation of deleterious alleles (Lynch et al. 1995, Lande 1998b), and loss of adaptive 

potential (Lande 1995, Swindell and Bouzat 2005). Improving connectivity in fragmented 

landscapes, and therefore the probability of population persistence, is now a major 

conservation priority (Crooks and Sanjayan 2006). Designing effective reserve systems and 

wildlife corridors for this purpose, however, requires an accurate understanding of the 

landscape factors which allow gene flow. 

Gene flow is a function of the degree to which a landscape resists dispersal, which, in 

turn, is highly dependent on both the species and the landscape of interest (Hastings and 

Harrison 1994). Three conceptual models capture the ways in which this occurs. The 



 

 31 

isolation by barrier (IBB) model predicts that strong barriers block dispersal, resulting in total 

isolation between subpopulations, but panmixia within each subpopulation. This mechanism 

of genetic isolation is commonly observed among species inhabiting habitat patches 

surrounded by an inhospitable matrix (e.g. aquatic species in unconnected lakes), and results 

in a discrete population structure.  

For continuously distributed species, or where the matrix between patches is readily 

traversed, isolation by distance (IBD) is commonly observed (Wright 1943). IBD predicts 

that genetic isolation is a function of Euclidean distance, and results in populations structured 

along a distance gradient. For highly vagile species, genetic isolation may accrue slowly over 

very large distances, while sessile species often exhibit IBD over very short distances. 

The third mechanism, isolation by landscape resistance (IBR), predicts that genetic 

isolation is a function of the degree to which a heterogeneous landscape resists migration 

(Cushman et al. 2006, McRae 2006). This model accounts for variation in the suitability of 

the matrix, and assigns a resistance cost to various landscape features (e.g. elevation, 

landcover type, roads, slope, or canopy cover) that affect migration. Under this model, 

genetic isolation accrues over distance as in IBD, but the rate at which it accrues varies 

according to the resistance of the landscape features. Isolation by resistance results in 

populations structured along a landscape resistance gradient, and is associated with species 

that inhabit complex landscapes that variably affect dispersal success. 

Despite the importance of understanding the mechanism of genetic isolation to the 

conservation of fragmented populations, most studies do not evaluate the relative support for 

IBB, IBD, or IBR. Currently, the most common approach to identify population genetic 

structure is to assign individuals to discrete subpopulations based on assignment tests such as 
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STRUCTURE (Pritchard et al. 2000). Importantly, this approach will always assign 

individuals to one or more discrete subpopulations, even if the actual structure is a gradient 

arising from IBD or IBR. Incorrectly assuming discrete subpopulations isolated by barriers 

can lead to misinformed conclusions regarding genetic isolation and diminish the 

effectiveness of conservation efforts aimed at improving the viability of populations in 

fragmented landscapes. 

In this study, I sought to determine the mechanism of genetic isolation in a population 

of mountain goats in the Cascade Range, Washington. This population has declined 

dramatically due to unsustainable levels of hunting over the past 50 years (Rice and Gay 

2009), and inhabits a landscape that has been transformed by anthropogenic factors such as 

roads, timber harvest, and development. Although the number of hunting permits issued has 

been greatly reduced over the past 20 years, recovery among much of the remnant population 

has not been apparent (Rice, Washington Department of Fish and Wildlife, unpublished 

data). The potential for genetic factors to affect the recovery and long-term viability of this 

population is of management concern, and an understanding of genetic isolation is required 

to devise an effective conservation strategy. 

In chapter 1, the discrete model based assignment tests STRUCTURE and Geneland 

suggested that the Cascades mountain goat population was divided into two subpopulations 

by an interstate (I-90), suggesting IBB was the predominant mechanism of genetic isolation 

within the study area (though some migration was observed between the north and south, 

indicating I-90 was not a complete barrier). However, spatial principal components analysis, 

sPCA (Jombart et al. 2008), revealed a north-south gradient of genetic isolation among 

mountain goats in the Cascades, suggesting IBD or IBR. To resolve this apparent 
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contradiction and develop a model of genetic isolation within the Cascades that can be used 

for mountain goat conservation, I sought to evaluate the relative support for each of these 

conceptual models. 

Cushman et al. (2006) described a method to evaluate the relative support for IBB, 

IBD, and IBR within an individual-based causal modeling framework. This approach 

recognizes that, while IBB and IBD are easily modeled due to their simple assumptions, 

modeling IBR can be challenging due to the generally poor understanding of how a 

landscape resists gene flow for a particular species. While biologists typically have an 

understanding of which factors may be important in shaping gene flow, quantitatively 

assigning a resistance to these factors based on expert opinion is highly subjective. Instead, 

Cushman et al. (2006) generated a range of plausible hypotheses relating elevation, slope, 

roads, and landcover to black bear (Ursus americanus) gene flow. The full factorial 

combination of these hypotheses was then evaluated based on the Monte Carlo significance 

of the Mantel’s correlation (Mantel 1967) between genetic distance (as measured by Bray-

Curtis dissimilarity of multilocus microsatellite genotypes) and landscape resistance 

(quantified according to the total cost of the least cost-path connecting each pair of 

individuals) for each hypothesis. The relative support for IBR, IBD, and IBB was also 

evaluated with partial Mantel’s tests (Smouse 1986). Using this approach, Cushman et al. 

(2006) found a model of IBR that included resistance due to landcover type, elevation, and 

slope was most strongly related to genetic isolation of black bears in northern Idaho.  

In this study, I tested the support for IBB, IBD, and multiple hypotheses of IBR that 

varied in the resistance assigned to roads, landcover type, elevation, and distance to escape 

terrain, all factors I considered a priori to be important forces shaping mountain goat gene 
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flow. My approach was based on the Cushman et al. framework, however, I included a 

multivariate process of IBR model selection, used principal components analysis (PCA) to 

quantify genetic distance, and used circuit theory (McRae 2006) to model landscape 

resistance between sampling locations as well as gene flow. I conclude by describing the 

ways in which these modifications improved model selection, and discuss the implications of 

the most supported model of genetic isolation to the recovery and long-term viability of 

mountain goats in the Cascade Range, Washington. 

 

M E T H O DS 

Study area 

The study area in Chapter 2 represents a subset of the Cascade Range studied in Chapter 1, 

and includes the areas proximal to the Cascade genetic samples (Figure 1). 

 

Sample collection, and genotyping 

For sample collection and genotyping, see chapter 1 methods. In Chapter 1, I identified 14 

individuals among the 149 Cascade samples collected that were significantly related to the 

non-native Olympic National Park (ONP) population. These ONP-Cascade admixed goats 

are likely descendants of animals translocated from ONP to the Cascades in the 1980’s. The 

location of their genetic variation, therefore, is highly influenced by management history, 

rather than the effect of the landscape per se. As such, they were excluded from the landscape 

genetics analysis of Chapter 2. 
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G IS data  

I used ArcGIS 9.2 (ESRI) to generate a slope raster based on a 30 m resolution digital 

elevation model (DEM) obtained from the USGS (USGS). I then used the ArcGIS 

“Euclidean Distance” function to generate a raster of Euclidean distance to escape terrain, 

Det, (defined as slope ≥ 50° based on a habitat model derived for coastal mountain goats, 

(Smith 1994). I obtained landcover data (raster, 30 m cell size) from the Northwest GAP 

Analysis Project (NWGAP), and reclassified it according to 7 broad categories, including 

alpine/rock, subalpine forest/parkland, montane forest, mesic forest/disturbed, urban/ 

agricultural, ice, and water. I also obtained road data (ESRI shapefile) from the Washington 

State Department of Transportation (WSDOT). I converted this layer to a raster (30 m cell 

size) and reclassified it into four broad categories: no road, secondary roads, highway, and 

interstate. All GIS data were projected to UTM NAD27 Zone 10 North. 

 

Quantifying genetic distance  

In molecular studies, genetic distance between individuals is commonly estimated with a 

model that assumes a particular mechanism of mutation, such as the infinite alleles model 

(Kimura and Crow 1964) or the stepwise mutation model (Ohta and Kimura 1973). As these 

models make a number of assumptions which may not be valid, particularly for highly 

variable markers like microsatellites (Balloux and Lugon-Moulin 2002), I chose to use 

principal components analysis (PCA) to estimate genetic distance. PCA generates synthetic 

variables (principle component axes) which reduce multidimensional data (in this case 

multilocus microsatellite genotypes) into a single dimension that contains most of the 
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variance (1st PCA axis) and makes no biological assumptions. I generated a data frame in R 

2.8 (The Comprehensive R Archive Network, CRAN) containing all individuals in my 

dataset in rows and all alleles present in the Cascade population in columns. I then scored 

each allele as 0 (not present), 1 (heterozygous), or 2 (homozygous) for all individuals and 

used R 2.8 to calculate the 1st PCA axis eigenvalues. I then used the Ecodist package in R 2.8 

(Goslee and Urban 2007) to generate an n x n pairwise genetic distance matrix based on the 

Euclidean distance between individuals along the 1st PCA axis (n = 135). 

Modeling IBB and IBD  

I modeled IBB by assigning samples (n = 135) to a north or south subpopulation based on 

their sampling location relative to the hypothetical barrier (I-90). I then generated an n x n 

distance matrix where pairwise distances between samples within the same subpopulation 

were given a value of 0 and samples on opposite sides of the barrier were given a value of 1. 

To model IBD, I used a Visual Basic script (written by Li Zou, available from ESRI) 

in ArcGIS 9.2 (ESRI) to generate an n x n matrix of Euclidean distance (in meters) between 

all sampling locations (n = 135) based on their UTM coordinates. As the Cascade Range is 

essentially a linear north-south landscape, untransformed distances are likely to be most 

appropriate, however, I also tested the correlation of a Log10 transformed IBD model, which 

would theoretically exhibit a stronger relationship with genetic distance in two-dimensional 

landscapes (Rousset 1997). 

Modeling IBR 

I modeled IBR by generating one n x n matrix of resistance distances for each IBR resistance 

hypothesis I tested. I used Circuitscape 3.0.1 (McRae 2006) to populate each matrix with 
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pairwise resistance distances between all sample locations, given the resistance hypothesis. 

Circuitscape uses graph and circuit theory to calculate resistance between points given a GIS 

raster layer defining landscape resistance (i.e. a resistance surface). I used a connection 

scheme where gene flow was only allowed between the nearest 4 cells (i.e. no diagonal 

connections) and resistance between any two cells was based on the average of the resistance 

assigned to both cells. In order to achieve a reasonable computing time for each Circuitscape 

run (average about 2 hours), I lowered the resolution of each resistance surface from 30 m to 

450 m by aggregating 15x15 blocks of 30 m pixels into a single pixel based on the average 

resistance of all the cells within the block. 

 

Evaluating the relative support for IBB , IBD , and IBR 

I used the R software package Ecodist (Goslee and Urban 2007) to evaluate the support for 

multiple hypotheses of IBR, as well as IBB and IBD, based on the strength of the Mantel’s 

correlation between each landscape distance matrix (barrier distance, Euclidean distance, or 

resistance distance) and the genetic distance matrix. I also used partial Mantel’s tests to 

assess the relative support for each conceptual model (IBB, IBD, or the most supported IBR 

hypothesis) while controlling for the effect of one of the other models. 

 

Univariate IBR model selection 

I evaluated the relative support for multiple hypotheses of IBR based on the following steps: 

1) identify factors likely to contribute to landscape resistance 2) identify an expert opinion 

model (based on a thorough review of the available literature, consultation with experts, and 

data obtained from 39 GPS collared mountain goats in the Cascade Range) that assigns a 
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resistance cost to each of those factors 3) test the assumptions of the expert opinion model by 

evaluating alternative hypotheses of landscape resistance for each factor and determining if 

any of these alternatives improved the fit of the model to the data (univariate optimization), 

and 4) combine the univariate optimal hypothesis for each factor into a multivariate model, 

and evaluate variations of this model to determine if alternate multivariate hypotheses 

improve the fit of the model to the data (multivariate optimization, described in the next 

section). 

To begin, I defined a priori four factors that I hypothesized were important resistors 

of gene flow among mountain goats, including distance to escape terrain, landcover type, 

roads, and elevation. For each of these factors, I generated an expert opinion hypothesis that 

assigned a resistance to every pixel in a GIS raster representing that factor. Because of the 

difficulty in reliably estimating the resistance of a landscape to gene flow based on expert 

opinion, I also generated additional hypotheses, as described below. 

 To generate an expert opinion model accounting for the resistance due to increasing 

distance to escape terrain (Det), I reclassified a raster representing Euclidean distance to 

escape terrain (slope > 50) according to the following function:  

Resistance (R) = Det 
X 

where the response shape exponent (x) = 0.1 in the expert opinion hypothesis. I then linearly 

rescaled the result to range from 1 to 50 (Figure 2a), with the maximum resistance occurring 

at ≥ 600 m. This cutoff value was chosen based on data collected from 39 GPS collared 

mountain goats in the Cascade Range, Washington (Cliff Rice, WDFW, unpublished data). 

These data suggested that the frequency with which mountain goats are observed decreases 

exponentially with distance to escape terrain, and 95% of all observations were within 600 m. 
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Next, I generated 4 additional hypotheses about this expert opinion model that either 

increased or decreased the response shape exponent or the maximum scale of the response. If 

increasing or decreasing the response shape exponent/scale improved the fit of the model 

(evaluated as described below), I generated additional hypotheses further 

increasing/decreasing the shape exponent/scale until a unimodal peak of support (i.e. the fit 

of all other models tested increased steadily towards the optimal model) was achieved. 

 I assigned road resistance for each of four categories of road type (no road, 

secondary/forest service road, highway, and interstate), each of which was characterized by 

the annual average daily traffic volume (Washington State Department of Transportation, 

2006) from July 2006 to October 2006 (0, 50, 4,000, and 28,000, respectively) according to 

the function: 

R = annual average daily traffic volume X  

where x = 1.5 for the expert opinion model. I then rescaled the result to range from 1 (for 

non-road pixels) to 1000 (Figure 3a). I generated additional road resistance hypotheses by 

increasing/decreasing the shape exponent/scale to achieve a unimodal peak of support. 

 Because landcover type is categorical, I modeled its resistance by first ranking each 

of the seven landcover types in order of increasing resistance. This order was informed by a 

Cascade Range mountain goat habitat study (Wells 2006). I assigned alpine/rock the least 

resistance, followed by, in order of increasing resistance, subalpine forest/parkland, ice, 

montane forest, mesic forest/disturbed, and water. I assigned landcover resistance according 

to the function: 

R = landcover rank 
X 
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where x = 5 for the expert opinion model. I then rescaled the result to range from 1 to 50 

(Figure 4a). In addition to the above landcover types, some urban and agricultural areas were 

present within the study area. I reasoned that, because these categories are only present in 

small patches within the Cascades, and mountain goats avoid human habitats, mountain goat 

gene flow would be directed around rather than through these areas. The high cost of these 

areas relative to other landcover types was also difficult to capture in a simple formula 

relating landcover to resistance. To avoid this issue, and force gene flow around these areas, I 

chose to assign urban/agricultural areas a prohibitively high resistance fixed at 100,000. I 

generated additional landcover resistance hypotheses by increasing/decreasing the shape 

exponent/scale to achieve a unimodal peak of support. 

 I assigned elevation resistance based on a Gaussian function defined an optimal 

elevations and a standard deviations (1400 m and 1000 m, respectively for the expert opinion 

model). I then rescaled the result to range from 1 to 5 (Figure 5a). I reasoned that mountain 

goat gene flow would never traverse the summits of Cascade stratovolcanoes and therefore 

assigned this elevation class (> 3,300 m) a prohibitively high resistance fixed at 100,000. No 

mountain goats have been observed (by GPS collar data or visual sighting) above this 

elevation in the Cascade Range (Rice, WDFW, personal communication). I generated 

additional elevation resistance hypotheses by increasing/decreasing the shape exponent/scale 

to achieve a unimodal peak of support. 
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Multivariate IBR model selection 

Once I had determined an optimal univariate model for each of the four factors considered, I 

then combined these factors into a multivariate model. To eliminate factors that might have 

been spuriously related to landscape resistance due to the number of hypotheses tested, I set 

the following criteria for inclusion of a factor in the multivariate model: 1) the Mantel’s 

correlation was greater than the null model of isolation by distance, in which all cells have a 

resistance of one 2) the Mantel’s correlation represents a unimodal peak of support (the 

Mantel’s correlation for all other hypotheses for a given factor increases towards the optimal 

model), and 3) The P-value was significant after Bonferroni correction for multiple tests 

(Rice 1989). 

 I then used raster algebra in ArcGIS 9.2 (ESRI) to additively combine the univariate 

resistance hypotheses that met the above criteria into a single multivariate model. The 

optimal shape exponent/scale for each factor could potentially change in a multivariate 

context. Optimizing the shape exponent/scale of all factors simultaneously was not practical 

due to the sheer number of potential combinations. Instead, I chose to vary the shape 

exponent and scale of one factor while holding the others constant. In some cases, this 

involved extending the range of the shape exponent or scale beyond what was used in the 

univariate optimization so that a clear peak of support was achieved. I optimized the factors 

in order of decreasing Mantel’s correlation for the univariate optimal hypotheses. Once the 

first factor was optimized in the multivariate context, I held it constant and varied the 

shape/scale of the next most highly correlated factor. If the shape exponent/scale of any 

factor was changed in the multivariate context, I repeated the optimization process in a 

second round. 
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Predicting gene flow 

Given a resistance surface hypothesis, it is possible to use circuit theory to calculate the flow 

of current (analogous to gene flow) between two or more points across that surface. To 

illustrate this, I used the most highly supported multivariate IBR hypothesis raster as the 

basis to calculate current between Mount Baker, in the north Cascades, and Mount Adams, in 

the south Cascades (points 1 and 4, Figure 10b). I used Circuitscape 3.1 (McRae 2006) to 

calculate current for all cells based on applying a 1 amp current to the Mount Adams point 

and connecting the Mount Baker point to ground. Current represents the relative frequency 

with which individuals moving by a “random walk” pattern would pass through a given cell 

as it travels across the resistance surface from the source to the ground point (McRae et al. 

2008).  

 

R ESU L TS 

Univariate optimization 

The Det hypothesis most correlated with genetic distance (r = 0.669, P < 0.0001, Figure 2b) 

was scaled from a resistance ranging from 1 to 5 and had a shape exponent of 0 (i.e., the 

highest resistance was achieved at any Det > 0). Support for this hypothesis reached a 

unimodal peak, however, its correlation was lower than the null model (r = 0.682), and I 

therefore chose to eliminate Det as a factor in the multivariate model. 

 The roads resistance hypothesis most correlated with genetic distance (r = 0.707, P < 

0.0001, Figure 3b) was scaled from a resistance of 1 to 2,500 and had a shape exponent of ∞, 

which assigns a resistance of 1 to all non-road, secondary road, and highway pixels and 2500 
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to interstate pixels. This hypothesis met all three criteria for inclusion in the multivariate 

model. 

 The landcover resistance hypothesis most correlated with genetic distance (r = 0.692, 

P < 0.0001, Figure 4b) was scaled from a resistance of 1 to 10 and had a shape exponent of 7, 

which assigns a resistance of 2 to mesic/disturbed forest and 10 to water (all other pixels 

have the minimum resistance of 1). This hypothesis met all three criteria for inclusion in the 

multivariate model. 

 The elevation resistance hypothesis most correlated with genetic distance (r = 0.686, 

P < 0.0001, Figure 5b) was scaled from a resistance of 1 to 5 and its shape was defined by 

the Gaussian optimal elevation of 1600 m with a standard deviation of 1500 m. This model 

met all three criteria for inclusion in the multivariate model. 

 

Multivariate optimization 

Because the optimal road resistance model displayed the highest correlation with genetic 

distance of any of the univariate models, I began the multivariate optimization with this 

factor. In the context of the univariate optimal elevation and landcover models, the optimal 

road resistance shape remained at ∞, however, the scale shifted from a maximum of 2500 to 

a maximum of 10,000 (r = 0.719, P < 0.0001, Figure 6). Next, I optimized landcover 

resistance, holding the optimal univariate elevation model and the new multivariate-

optimized road resistance model constant. In this context, the optimal landcover resistance 

shape exponent shifted from a value of 7 to ∞, and the scale shifted from a maximum of 10 to 

a maximum of 25 (r = 0.720, P < 0.0001, Figure 7). Holding the multivariate optimized road 

and landcover resistance models constant, I varied the shape and scale of elevation 
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resistance. The optimal shape exponent and scale, however, did not change from the 

univariate optimum elevation (r = 0.721, P < 0.0001, Figure 8). Lastly, I performed an 

additional multivariate optimization to determine if the change in landcover resistance altered 

the optimal shape/scale of road resistance. While the optimal road resistance scale did not 

change, the shape shifted from an exponent of ∞ to 3, which assigned the minimal resistance 

(1) to non-road and secondary road pixels, 80 to highways, and 10,000 to interstates (r = 

0.723, P < 0.0001, Figure 9). The resistance costs associated with the final multivariate-

optimized IBR model is given in Table 1 and a map depicting these resistances within the 

study area is given in Figure 10a.  

 

Relative Support for IBB , IBD , IBR 

The IBB model displayed a strong correlation with genetic distance (r = 0.645, P < 0.0001, 

Table 2). The IBD model appeared more supported compared to the IBDLOG10 model (r = 

0.686, P < 0.0001 and r = 0.538, P < 0.0001, respectively, Table 2), and the multivariate 

optimized IBR model appeared more supported than the expert opinion IBR model (r = 

0.723, P < 0.0001 and r = 0.640, P < 0.0001, respectively, Table 2). I used partial Mantel's 

tests to evaluate the relative support for the three conceptual models of genetic isolation 

(IBB, IBD, and the multivariate optimized IBR model). The IBD model retained significant 

relationship with genetic distance when the variance due to IBB was partialled out (r = 0.419, 

P < 0.0001, Table 2), but not when IBR was partialled out (r = -0.006, P = 0.5916 Table 2). 

The IBR model retained a significant relationship with genetic distance when the variance 

due to IBB or IBD was partialled out (r = 0.426, P < 0.0001; r = 0.302, P < 0.0001, 

respectively, Table 2). The IBB model retained a significant relationship with genetic 
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distance when the variance due to IBR or IBD was partialled out (r = 0.076, P = 0.0007 and r 

= 0.300, P < 0.0001, respectively, Table 2). Because the IBD and IBB models retained little 

or no correlation with genetic distance when the variance due to the IBR model was 

partialled out, while the converse was not true, the multivariate optimized IBR model appears 

to have the strongest relationship with genetic distance among the models tested.  

 

North-south landscape resistance and gene flow 

Based on circuit theory, the north-south gene flow across the modern landscape reveals 

several pinch points where current is channelized (Figure 10b). As gene flow originating at 

Mount Adams (point 4, Figure 10b) moves northwards towards Mount Baker (point 1), more 

dispersal avenues become available and current travels in a broad swath through the south 

Cascades. As gene flow crosses I-90 and State Highway 2, a few developed areas and 

lakes/reservoirs constrain gene flow, resulting in several “pinch points” where current is 

increased in narrow channels. Further north, many available paths allow for a broad pattern 

of gene flow. Finally, as gene flow converges on Mount Baker, the urban and agricultural 

areas of the Skagit Valley force current to the east. As gene flow approaches the destination, 

current increases because all paths converge on a single point. The total resistance between 

Mount Baker and Mount Adams across the IBR resistance surface is 25.8. By comparison, 

the resistance between two points flanking I-90 (2 and 3, Figure 10b) is 12.5. The north-south 

resistance in the north Cascades (between points 1 and 2) is 14.2 while the north-south 

resistance in the south Cascades (between points 3 and 4) is 9.5.  
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DISC USSI O N 

This study improves upon previous landscape genetics applications of causal modeling in 

several ways. Multivariate optimization of both the response shape and the resistance cost 

range of each IBR model factor avoids the arbitrary nature of assigning resistance based on 

expert opinion alone. This advantage was apparent in the comparatively poor performance of 

the expert opinion model relative to the optimized IBR model (Figures 2-5, Table 2), 

demonstrating that a priori assumptions regarding the shape and scale of landscape resistance 

may not be fully supported. Moreover, as the optimal univariate model changed when in the 

context of the other factors (Figures 6-9), multivariate optimization appears to be a 

worthwhile procedure to achieve the best possible fit of a resistance hypothesis to the data.  

Although this approach to evaluating multiple hypotheses of landscape resistance 

allows for the assumptions of an expert opinion model to be explicitly tested, one limitation 

is the potential for spurious correlations to arise among the 120 IBR models I generated. The 

fact that all hypotheses for a given factor were ordinated (both by the response shape 

exponent and the resistance scale) allowed validation by the expectation of a unimodal peak 

of support for a single hypothesis per factor. Excluding factors that did not meet this criterion 

greatly minimized the potential for spurious correlations to influence model selection.  

 In addition, by excluding factors that do not exhibit a stronger correlation with 

genetic isolation than the null model of isolation by distance (all pixels are assigned a 

resistance of 1), the model selection process I used represents a rigorous and reproducible 

approach to identify important factors among several possible factors shaping gene flow. 

Moreover, this multivariate optimization process allows for the scale of each factor to shift 

independently of other factors, resulting in a natural weighting of those factors that most 
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strongly shape gene flow. In the optimized IBR model, for example, the scale of road 

resistance varied from 1 to 10,000 (depending on the road type), while the scale of elevation 

resistance ranged from 1 to 5 (depending on the elevation above or below the optimal 

elevation of 1600 m). This disparity reflects the relatively greater effect roads have on 

resistance, per pixel. 

In another departure from previous causal modeling studies of IBR, I used circuit 

theory to quantify landscape resistance. More commonly, least-cost-path (LCP) analysis has 

been employed to quantify landscape resistance. Important limitations to LCP models are the 

unfounded assumptions that dispersing animals have perfect knowledge of the landscape, 

only use a single corridor, and encounter equal resistance whether the corridor is wide or 

constrained. By contrast, circuit theory assumes a random walk dispersal behavior, 

simultaneously integrates the contribution of all possible pathways to gene flow, and 

attributes greater resistance to narrow corridors than wide corridors (McRae 2006). This 

more robust theoretical foundation has been attributed to the ability of circuit theory to 

outperform LCP models in both simulated and real landscapes (McRae 2006, McRae and 

Beier 2007). In addition, circuit theory can also be used to calculate current, given a 

resistance surface. As current is a function of movement probability along all possible 

branches of a graph linking two nodes (McRae et al. 2008), it can be used to identify pinch 

points where gene flow is constrained. Such areas are natural targets for mitigation efforts 

aimed at improving gene flow if connectivity is found to be insufficient. 

Another aspect of this study that potentially improves model selection is the use of 

PCA to quantify genetic distance. With this approach, alleles that capture the greatest 

proportion of the genetic variation in a population have a correspondingly greater 
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contribution to genetic distance than common alleles, which capture relatively little of a 

population’s genetic variation. In theory, this makes PCA a more sensitive method to detect 

genetic dissimilarity than other methods, such as the Bray-Curtis dissimilarity index used in 

Cushman et al. (2006), where all alleles contribute equally. In addition, as PCA makes no 

biological assumptions, this approach is more parsimonious than distance metrics that 

assume an infinite alleles model (Kimura and Crow 1964) or a stepwise mutation model 

(Ohta and Kimura 1973) of microsatellite variation. While these theoretical advantages of 

PCA-based genetic distance are compelling, the performance of this method relative to other 

metrics of has not been tested. 

 Despite the relatively small sample size available for this study, I was able to derive a 

model of genetic isolation that exhibited among the strongest correlations with genetic 

distance yet published. This is likely attributable to the focus here on the individual as the 

unit of observation. In classical population genetics, the population is the unit of observation. 

This approach first requires assigning sampled individuals to discrete subpopulations, which 

is problematic for continuously distributed species. Furthermore, population-based metrics of 

genetic distance such as linearized FST typically assume an island model of population 

structure (Slatkin 1995), which may not be representative of the true structure. Reliably 

estimating population-based metrics of genetic distance also requires a sample size on the 

order of tens of individuals, limiting the number of populations that can practically be 

delineated. This, in turn, limits the number of observations which can be used to correlate 

genetic distance with models of genetic isolation. The individual-based approach used here 

obviates the need for assigning individuals to a population and dramatically increases the 
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number of observations with which to make correlations. This is particularly advantageous 

for rare or difficult to sample species such as mountain goats. 

Employing individual-based causal modeling, a multivariate model selection process, 

circuit theory, and PCA, I derived a model of genetic isolation by landscape resistance that 

was strongly correlated with genetic distance and was better supported than alternative 

models of genetic isolation (IBB, IBD) or an expert opinion IBR model (Table 2). The 

optimized IBR model broadly agrees with the findings presented in Chapter 1 in that I-90 is 

the most important single factor shaping genetic structure in the population. The greater 

support for this model of IBR relative to IBB, however, demonstrates that the resistance due 

to I-90 only captures a portion of the genetic isolation present in this landscape. In fact, there 

appears to be as much genetic isolation within the north and south subpopulations as there is 

between them (Figure 10b). Thus, the common approach of assuming panmixia within 

discrete subpopulations isolated by barriers, in this case, would grossly overestimate gene 

flow within the north and south Cascades. Similarly, if I had only evaluated the support for 

IBD (as is commonly performed in population genetic studies) I would have overstated gene 

flow both within each subpopulation and across I-90 by not accounting for the isolation 

arising from roads, elevation, and the resistive landcover types in the optimized IBR model. 

The fact that all three models of genetic isolation exhibited strong and significant Mantel’s 

correlations with genetic distance highlights the need to rigorously evaluate the relative 

support for IBB, IBD, and IBR. 

 While the most supported IBR model in this study largely fit the expectations of 

genetic isolation suggested by the Chapter 1 analysis, there were two surprising findings. 

First, the most supported response shape for landcover assigned the same low cost (the 
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minimum resistance of 1) to both forests and alpine terrain. While mountain goats are 

typically associated with alpine terrain in summer months when low snowpack permits 

dispersal, the coastal North American mountain goat populations, unlike interior populations, 

frequently move to lower elevations below treeline in winter (Demarchi et al. 2000, Festa-

Bianchet and Cote 2007). As such, Cascade mountain goats may be more accustomed to 

these environments and not be strongly inhibited from moving through forests. The potential 

for this adaptation is partially supported by GPS data collected from Cascade mountain goats, 

which reveals several long-distance dispersal events and movements to mineral licks that 

involved traversing large tracts of continuous forest (Rice, Washington Department of Fish 

and Wildlife, unpublished data). Alternatively, because landcover type and elevation are 

correlated, the cost of forests may be at least partially encompassed by the resistance due to 

elevation included in the model. 

 Another unexpected finding was the exclusion of resistance due to escape terrain 

from the most supported IBR model. This species is known to rely heavily on escape terrain 

for predator avoidance, and, as a result, mountain goat movements appear highly correlated 

with proximity to steep slopes (Gross et al. 2002, Festa-Bianchet and Cote 2007). A possible 

behavioral explanation for this finding may be that dispersing goats in unfamiliar terrain do 

not have the perceptual range to detect routes that maximize escape terrain. Alternatively, a 

methodological explanation may stem from the 450 m resolution I used to model landscape 

resistance, which may not closely match the scale at which escape terrain is represented in 

the landscape, perhaps masking the importance of this factor. This coarser resolution was 

necessary due to the impractical computing time required for a finer scale analyses.  
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 The gene flow predicted by the IBR model has important implications for the 

viability of mountain goats in the Cascade Range. Urban and agricultural areas were 

categorized as highly resistive landscape features in this model. Consequently, the Puget 

Sound lowlands would be predicted to force gene flow eastward. The effect of this altered 

gene flow would be predicted to increase the genetic isolation between mountain goats 

inhabiting the western extremes of the Cascades, including groups in the Mount Baker, 

Darrington, and western Alpine Lakes region. The few developed areas within the core of the 

Cascade Range, however, do not appear to generate pinch points where north-south gene 

flow is greatly constrained, except between a few urban areas along State Highway 2 and I-

90. In contrast, no path linking the north and south Cascades avoids the high resistance of I-

90. 

As the local effective population size governs the balance between gain and loss of 

genetic diversity, the reduction in Ne due to the high resistance of I90 would be predicted to 

favor loss of genetic diversity over time. Reduced genetic diversity, in turn, would be 

predicted to increase the risk of inbreeding depression in the short term as well as loss of 

adaptive potential fixation of deleterious alleles in the long term, thus negatively impacting 

the population’s future viability. The other factors predicted to reduce gene flow in the IBR 

model, including suboptimal elevations, highways, and certain landcover types, though they 

appear to have a relatively modest resistance per pixel, have a cumulative effect comparable 

to that of I-90 (Figure 10b), resulting in a further reduction in effective population size and 

additional extinction risk to the population. These effects of genetic isolation due, in part, to 

modern landscape changes suggest the need to estimate Ne considering the importance of this 

parameter to population viability. The understanding of factors affecting landscape resistance 
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gained in this study may be used to quantify Ne given the resistance of the modern landscape. 

This may then be used as a means to quantify the potential for genetic factors to influence the 

recovery and long-term viability of mountain goats in the Cascade Range under a range of 

scenarios, including the construction of I-90 wildlife passages and other potential landscape 

changes.  
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T A B L ES 

 

 

 

 

Table 1. Resistance cost for each landscape factor contributing to resistance in the most 
supported isolation by resistance model. 
 
 

Factor Resistance  
Urban/Agriculture 100,000 Fixed 
Elevation > 3,300 m 100,000 Fixed 
Interstate 90 10,000 Optimized 
Highways 80 Optimized 
Water 25 Optimized 
Elevation < or > 1600 m  2 - 5 Optimized 
All other pixels 1 Optimized 
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Table 2. Mantel’s correlation with genetic distance (G) for each model of genetic isolation 
and partial Mantel’s correlations with genetic distance, controlling for alternative models of 
genetic isolation with P values based on  Monte Carlo randomization of the row/column 
order. 
 
 

Model Mantel’s r Monte Carlo P value 
IBB ~ G   0.645 < 0.0001 
IBD ~ G   0.686 < 0.0001 
IBDLOG10 ~ G   0.538    0.0001 
IBR ~ G   0.723 < 0.0001 
Expert IBR ~ 

G 

  0.640 < 0.0001 
IBB ~ G | IBD   0.300 < 0.0001 
IBD ~ G | IBB   0.419 < 0.0001 
IBB ~ G | IBR   0.076    0.0007 
IBR ~ G | IBB   0.426 < 0.0001 
IBD ~ G | IBR     - 0.006    0.5916 
IBR ~ G | IBD   0.303 < 0.0001 

 

 

 



 

 55 

F I G UR ES 

 

 

F igure 1. The study area is depicted as a digital elevation model in meters, with highways 
shown in thin black lines, Interstate 90 as a thick black line, and genetic samples denoted by 
black triangles. 
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F igure 2. (a) The resistance assigned to increasing distance from escape terrain      
(resistance = distance X, rescaled to range from 1 to the maximum resistance specified by the 
resistance hypothesis), given one of the five response shapes (the exponent, x, is noted in a 
box along each shape curve). (b) The Mantel’s correlation with genetic distance is given for 
25 hypotheses of resistance due to escape terrain that vary by x (given on the x-axis) and the 
maximum resistance (given in the scale legend). The gray area indicates hypotheses less 
correlated with genetic distance than the null model. All hypotheses presented were 
significant (α = 0.05) after Bonferroni correction for multiple tests. 
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F igure 3. (a) The log10 of resistance assigned to various road types (resistance = traffic 
volume  X, rescaled to range from 1 to the maximum resistance specified by the resistance 
hypothesis), given one of the five response shapes (the exponent, x, is noted in a box along 
each shape curve). (b) The Mantel’s correlation with genetic distance is given for 25 
hypotheses of resistance due to roads that vary by x (given on the x-axis) and the maximum 
resistance (given in the scale legend). The gray area indicates hypotheses less correlated with 
genetic distance than the null model. All hypotheses presented were significant (α = 0.05) 
after Bonferroni correction for multiple tests. 
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F igure 4. (a) The resistance assigned to various landcover types (resistance = landcover 
rank X, rescaled to range from 1 to the maximum resistance specified by the resistance 
hypothesis), given one of the five response shapes (the exponent, x, is noted in a box along 
each shape curve). (b) The Mantel’s correlation with genetic distance is given for 25 
hypotheses of resistance due to landcover that vary by x (given on the x-axis) and the 
maximum resistance (given in the scale legend). The gray area indicates hypotheses less 
correlated with genetic distance than the null model. All hypotheses presented were 
significant (α = 0.05) after Bonferroni correction for multiple tests. 
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F igure 5. (a) The resistance assigned to various elevations (resistance = elevation  X, rescaled 
to range from 1 to the maximum resistance specified by the resistance hypothesis), given one 
of the five response shapes (the exponent, x, is noted in a box along each shape curve). (b) 
The Mantel’s correlation with genetic distance is given for 25 hypotheses of resistance due to 
elevation that vary by x (given on the x-axis) and the maximum resistance (given in the scale 
legend). The gray area indicates hypotheses less correlated with genetic distance than the null 
model. All hypotheses presented were significant (α = 0.05) after Bonferroni correction for 
multiple tests. 
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F igure 6. The Mantel’s correlation with genetic distance is given for 25 hypotheses of 
resistance due to roads that vary by the shape exponent (resistance = road type X) along the x-
axis, rescaled to range from 1 to the maximum cost given in the scale legend. The resistance 
for each of these hypotheses was added to the most highly correlated univariate model of 
elevation and landcover resistance prior to testing the Mantel’s correlation. 
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F igure 7. The Mantel’s correlation with genetic distance is given for 45 hypotheses of 
resistance due to elevation that vary according to a Gaussian function defined by the optimal 
elevation along the x-axis and the standard deviation of the Gaussian elevation, rescaled to 
range from 1 to the maximum cost (see legend). The resistance for each of these hypotheses 
was added to the most highly correlated univariate model of road and landcover resistance 
prior to testing the Mantel’s correlation. 
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F igure 8. The Mantel’s correlation (r) with genetic distance is given for 25 hypotheses of 
resistance due to landcover type that vary by the shape exponent (resistance = landcover rank 
shape exponent) along the x-axis, rescaled to range from 1 to the maximum cost given in the scale 
legend. The resistance for each of these hypotheses was added to the most highly correlated 
univariate model of elevation and road resistance prior to testing the Mantel’s correlation. 
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F igure 9. The Mantel’s correlation with genetic distance is given for 25 hypotheses of 
resistance due to roads that vary by the shape exponent (resistance = road type shape exponent) 
along the x-axis, rescaled to range from 1 to the maximum cost given in the scale legend. The 
resistance for each of these hypotheses was added to the most highly correlated univariate 
model of elevation and landcover resistance prior to testing the Mantel’s correlation. 

0.68

0.69

0.70

0.71

0.72

0.73

0 1 2 3 4

Shape Exponent

M
an

te
l's

 r

2500
5000
10000
25000
50000

Scale

∞



 

 64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F igure 10. (a) The IBR model most highly correlated with genetic distance is depicted on a 
log base 10 scale, with the highest resistance in white and low resistance in black. (b) The 
color scale represents the current flowing between points 1 and 4 according to circuit theory, 
given the landscape resistance surface on the left. Also, the landscape resistance between the 
four points (black triangles labeled 1-4) is represented next to arrows connecting each pair of 
points. Interstate 90 is represented by a black line running east-west between points 2 and 3. 
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APPE NDI X 

Formulae 

Observed heterozygosity Ho per locus: 
 
 Ho =  ∑ nij / n 
 

where n is the sample size and nij is the number of individuals heterozygous at the 
locus. Ho was then averaged across all loci. 

 
 
Expected heterozygosity He per locus: 
 
 He =            
 

where nk is the size of sample k, pik the frequency of allele Ai in sample k and Hok the 
observed proportion of heterozygotes in sample k. He was then averaged across all 
loci. 
 

Effective number of alleles AE: 
 
 AE = 1 / (1-He)   
 

where He is the expected heterozygosity 
 

Inbreeding coefficient F IS: 
 
 F IS = 1 - Ho / He 
 
 
Elevation resistance Gaussian function: 

Elevation resistance = (a + 1) - (a x e – (elevation – b) / (2 c ^2))  
 
where a = the maximum elevation resistance, b = the optimal elevation, and c = the 
standard deviation about the optimal elevation.  
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